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We consider a new approach to the statistical mechanics of chemical association, 
A + B ~ AB. In principle it is exact, and its thermodynamic basis goes back to 
Gibbs, but its statistical mechanical implementation in terms of molecular 
models does not appear to have been given before. For practical computations 
the success of the method hinges on our ability to calculate the free energy for 
a mixture of A, B, and AB species, where the species concentrations are regarded 
as independent. We illustrate the method by analysis of some simple limiting 
cases. 

KEY WORDS: Chemical association; thermodynamic equilibrium condition; 
law of mass action; sticky spot models; fused-sphere virial coefficients. 

1. I N T R O D U C T I O N  

The problem of chemical association 

A + B ~,~- AB 

in systems dense enough to be out of the law-of-mass-action regime has 
been investigated in some detail in terms of molecular  models during the 
last two decades. (1 12) Here we develop a new approach. Its thermodynamic  
basis was given by Gibbs,  (131 but  its implementa t ion  as a recipe for making  

quant i ta t ive predictions in terms of molecular  models does not  appear  to 

have been previously carried out. In  a fundamenta l  statistical mechanical  
description this system can be viewed as consist ing of two atomic species 
of densities po and pO (which are independent  of what fraction of A and 
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B atoms we regard as being associated), while for our purposes it is more 
convenient to view it as a three-species system (14) of densities PA, PB, and 
PAB (which refer to unassociated A and B atoms and associated AB pairs) 
with 

pO = PA + PAn, P~ = PB + PAB (1) 

In this latter case, however, the densities cannot be varied arbitrarily, but 
are related through a constant of chemical association, 

PAB K~- (2) 
PAPs 

which is among the quantities we want to determine from statistical 
mechanics. (Actually, K is not a constant, but a temperature-dependent 
and density-dependent function.) Following Gibbs, we shall determine K 
by maximizing the Helmholtz free energy. To do this quantitatively, one 
must have at hand a quantitative assessment of the independent thermo- 
dynamics of the three-species system over a whole range of densities PA, 
p~, and PAB for given pO and pO. It is the paucity of such input for 
Hamiltonian models of interest that has probably inhibited the prior 
development of this approach. 

The first obstacle one encounters in approaching the problem is to 
distinguish--in the many-particle environment--between an AB molecule 
and two atoms A, B that happen to be close together. From the point of 
view of chemical binding, these two situations differ with respect to the 
internal electronic configurations of the atoms involved. This essentially 
quantum mechanical effect can be mimicked in simple classical terms by 
the "sticky-spot ''(6'7~ and related (1'5/ models. (Remarkably, the sticky-spot 
model was already introduced by Boltzmann, (15) long before the advent of 
atomic physics.) In these models the atoms are given an internal degree of 
freedom of 4n times an angular orientation h, and there is an attractive 
binding energy only when the two atoms are at binding distance, and also 
are oriented with (say) their internal north poles pointing toward each 
other to within a certain solid angle. If the region of attraction so defined 
is made small enough, and if the atoms are otherwise given a hard-core 
repulsion of sufficient range, only two-atom molecules can be formed. To 
be precise, we may define a region o f  relative attraction (Boltzmann calls 
this the reduced critical space) as the set where the characteristic function 

zs(r i ,  Fli; rj, Ftj) = O ( L  + -- r) O(r  -- L _  ) 

x O ( ~ i . f o - c o s  0o) O(r?j- f j i -  cos 0o) (3) 
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is nonzero. Here r = I r i - r j l ,  P~ = -Psi = ( r i - r j ) / r ,  with r~ the center posi- 
tion of atom i. Further, rii is the angular orientation of atom i, and 

{10 f~ x > 0  
O(x)= for x < 0  

With the center position of one atom kept fixed, Zs is nonzero on a region 
of volume 

Vs = (4~/3)(L 3 - L  3_ )(4zt sin 2 00/2) 2 -  (47z) 2 Vs (4) 

By shrinking V s to zero in appropriate ways one may obtain the 
sticky-spot or sticky-point models. 

In these models we may thus give a precise definition of an AB 
molecule as a configuration of atoms A and B that are in their region of 
relative attraction. There is then no ambiguity problem with respect to 
what we mean by an AB particle. Of  course, the important  question is 
whether the essential physics has been modeled correctly. We believe that 
this is the case as far as association of monovalent atoms is concerned. 

If all aspects of this classical model are taken dead seriously, the con- 
tribution to the partition function from the internal degrees of freedom fii 
that give rise to the atomic association should show up as an additional 
term in, e.g., the entropy per atom and the specific heat per atom. If the 
atoms in our model are structureless, however, such contributions will not 
be present. To compensate for this, the integration over the internal 
angular variables r~i in the partition function should be normalized as 

1 f d2Fl i 

and the remaining normalizations should be done in terms of the standard 
de Broglie thermal wavelengths for structureless particles, 

Aat~ = h( 2rc/mkB T)1/2 

with h Planck's constant (divided by 2~), m the particle mass, and kBT 
Boltzmann's constant times temperature. 

We may now continue. We must still decide on a reasonable region of 
attraction, as well as a binding potential in this region. A limiting case 
is obtained when the region of attraction shrinks to a point, V s ~ O .  
This leads to a molecule of fixed interatomic distance, which is often a 
reasonable approximation. However, to get a finite possibility of binding, 
we then (for entropic reasons) have to scale the binding energy to infinity 
at the same time. This will in turn lead to a very singular temperature 

822/62/1-2-15 
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dependence, with all atoms dissociated above a certain temperature, and all 
associated below that temperature. 

At this point it is probably wise to realize that a purely classical 
approach in any event is bound to be inaccurate. Since the binding of two 
atoms for accuracy must be described quantum mechanically, the ther- 
modynamics of the resulting molecules is determined by the number of 
available bound states, their level spacings, and so on. As an example, the 
specific heat for a two-atomic molecule is typically ~kB at room tem- 
perature, which means that of the six velocity degrees of freedom in the two 
bound atoms, one has been frozen out. It is very difficult to account for 
that in a completely classical model. The conclusion is that we should in 
any case model the (short-range binding part of the) Boltzmann factor 
directly, instead of via a classical interatomic binding potential. Thus we let 

e -  v<m;Bj)/k, rX s( Ai; Bj ) -* Ko( T) Z s( Ai; Bj )/v s (5) 

where Ai and Bj represent short-hand notation for the coordinates of 
atoms A and B. Here the factor Ko(T) can be found from quantum 
mechanical analysis of a single AB molecule. A worthwhile consistency 
requirement is that it should lead to the correct specific heat, and heat of 
reaction, in the dilute-gas limit. A reasonable approximation at room 
temperatures would be of the form 

Ko( T) = Co T -  l/2eZlE/kBr (6) 

where Co is temperature independent, with dimensions such that Ko(T) has 
dimension of volume. (The temperature dependence of the preexponential 
is chosen such that the specific heat per molecule becomes ~kB.) 

2. M O D E L ,  A N D  BASIC IDEA OF A P P R O A C H  

The considerations in the Introduction lead us to study models of 
atoms A and B with interactions defined by the Mayer f function, 

f ( Ii; Jj ) = (1 - 6zj) X s( Ii; Jj ) Ko( T)/v s 

- 1  for r - t r ~ - r j l < d / 2  
+ e x p [ - V u ( r ) / k B T ]  for r > d / 2  (7) 

where /, J = A ,  B. The canonical partition function for this system may 
now be decomposed according to the number NAB of AB pairs which are 
in the region of relative attraction. This gives 
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- F2(N~ N ~ 
Z(N~ N ~ = exp kBT 

1 NOA NO 

-uO,  uO! [. ~I dSZA~ H dSZBY I~ [l + f(Zi',Jj')] 
�9 i = 1 J : 1 I J i ' j '  

1 ( '  NA NB NAB 

= Z NA'N. 'NAB'J  I~ dSZA~[I dSzBJ ~I dIOZABk 
NAB " ' ' i =  1 J = I k = 1 

x 1~ [1 +fe~(li', Jj')] 
1Ji 'j' 

= Z Z( N~ --NAn, U ~ --NAB, NA.) 
NAB 

= ~ exp -F3(NA,  NB, NAB) (8) 
NAB kB T 

where NA = N ~ --NAB, NB = N ~ --NAB. The combinatorics of the prefac- 
tors work out as follows: There are 

 osp. 
N A B / ]  ~ N A B / ]  

ways to pick out the reacting atoms, and NAB! ways to combine them into 
molecules. The Mayer function fefr differs from f in that fffr(Ai; B j )  = - 1  
when the (unreacted) atoms Ai, Bj are in their region of relative attraction. 
By this definition we avoid double counting of such configurations. 

Further, in (8), 
d3rli d2flii 

dSzzi- Ada(I) 3 4u ' I =  A, B 

(9) 
d3rAk d3rB~ d21~Ak d2~Rk 

dlOzABk = AaB(A) 3 AdB(B) 3 4~ 4g 

denotes integration over center positions and angular orientations of the 
particles, with AaB(1 ) the de Broglie thermal wavelengths of atoms I =  A, B. 
The ten-dimensional integration over each zAB ~ can be factorized into an 
unrestricted three-dimensional integration over the center-of-mass position 
and a remaining seven-dimensional integration restricted to the region of 
relative attraction. 

In the thermodynamic limit we may approximate the sum in (8) by its 
largest term, found by differentiating the summand with respect to NAB 
with fixed N ~ , N o . This leads to the relation 

F2(N ~ , N ~ ~- F3'(N A , N B , WAS ) (10) 
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where the densities in the three-species system is determined by the 
equilibrium condition 

~AB = #A -[- ~B (11) 

with 

(121 
/AI \ONI /T ,  Nj#NI 

The ]A I is the chemical potential of species I =  A, B, AB. Thus, the models 
defined by (7) may really be analyzed as if consisting of three independent 
species, provided that in the end we impose the condition (11). Further- 
more, this approach is exact (for the models considered) to the extent that 
we are able to compute the free energy F3(NA, NB, NAB ) exactly. Of course, 
in practice we must rely on approximations at this last point. 

Equation (12) is also the true chemical potential for the species A, B 
when we view the system as a two-species system. We have 

( 63Fz)=(OF3) -(oNAB~F{OF3) (OF3"]-( ~F3 )7 
~ i ]  \~N,J \63N~ \63NABJJ 

where the last bracket is zero due to (11). However, variations with respect 
to the bare densities are not in general that simple. We have that 

63 63pAB( 63 _{ 63 63 ) 
0pO @, @o @. (13) 

where (63PAB/Op ~ can be found by differentiating (11): 

( ~ P A B ~  = (~/~Pl)(#A -]- l i b  - -  ] l A B )  
(14) 

The extension of this method to systems with more than two species 
of atoms (as well as reduction to the case of A = B) is straightforward. The 
basic equation is 

#iJ = P, + #J (15) 

for all IJ, if only diatomic molecules can be formed. Actually, Eq. (15) is 
just a consequence of the thermodynamic fact that the reaction I+ J.~-IJ 
will proceed until the free energy is minimized, and must be true in general 
(to the extent that it is possible to distinguish between molecules and 
individual atoms). This viewpoint goes back to Gibbs (13), and was recently 
enunciated by Pratt and Chandler (2b) as a basis for their interaction-site 
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formalism of association ~2a). The method used in (8) to evaluate the 
partition function gives a general statistical mechanical justification of this 
viewpoint, and shows how the relevant thermodynamic potentials can be 
evaluated outside of chemical equilibrium. 

As a further extension, the method may also be refined by considering 
molecules with different internal degrees of freedom (e.g., different inter- 
atomic distances) as being different. This latter viewpoint is in spirit close 
to the approach taken in ref. 3b. 

3. T H E  L O W - D E N S I T Y  L I M I T  

As a consistency requirement, our approach must reproduce the law of 
mass action in the low-density limit. The lowest order free energy per 
volume unit 4 becomes 

f(o) 
3 

kBT 
=pA{ln[pAAdB(A) 3 ] -  l} +pB{ln[pBAaB(B) 3 ] -  1} 

+ pAB{ln[PABAoB(A) 3 Ad~(B)3/Ko(T)] - 1 } (16) 

Thus, the equilibrium condition (11) becomes 

PA~ = Ko(T) PA PB (17) 

which is precisely the law of mass action. 
Further, due to (11), the equation of state becomes just the ideal gas 

result, 

p(O) 1 ( 3 F )  

k B T -  k~T ~-V T, NO N o=pA+pB+pAB (18) 

as does the specific heat, 

{ 2  r2 • ) 

=5(OA+0B)+ 3+ (19) 

even though the composition of the system changes with temperature and 
volume. 

Although these results are trivial to derive from the point of view of 
the three-species system, in terms of the bare densities pO, pO a rather 

4 From now on f denotes the free energy per unit volume, not the Mayer f function. 
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elaborate perturbation expansion is needed. (3a) The reason is that even 
though all densities are small, the ratios (pA/pOA), etc., may still be of order 
1 if the attractive potential AE is strong enough or the temperature is low 
enough. Thus, to obtain a density expansion which is valid uniformly in 
temperature, this must be accounted for by an infinite resummation of the 
perturbation expansion in the bare densities p0A, pO The present method 
leads to a density expansion where this resummation is done automatically 
through use of the equilibrium condition (2). 

4. SYSTEMATIC  DENSITY EXPANSION 

If the potentials Vrj(r) are of short range, so that the integration over 
the Mayer f bonds converges, we may proceed with a regular density 
expansion. In terms of the virial expansion for the excess pressure 

P p /  B 2 p/p j +  ~ + . . .  (20) - = B3 PzPsPK 
I JK  

(where the sums run over /, J, K =  A, B, AB), we have the corresponding 
expansion for the excess free energy 

( f  _ f(o)~ ,J B 'sK- ,, ,~ ~ (21) 1 
~ n T  / = L  B z p , P J + ~  3 [ J I Y J Y K  I ' ' *  

IJ  I JK  

Solving the equilibrium condition (11) now leads to a perturbation expan- 
sion for the association constant 

3 ( 7 
3 P-~ ~ + " ' !  K =  PAB _Koexp  --2~'(--1)E11B~JPJ--2~~z'7~ --1)CZ1BIJK- p 

P A P B  ] 
(22) 

where the sums again run over I, J, K = A ,  B, AB, and [I]  = (1, 1, 2) for 
I = ( A , B ,  AB). This expansion shows how the association constant 
acquires density dependence. The exponential factor is just a perturbative 
expression for the quantity 

e(A/~A + A,u8 -- z//~AB)/kB T 

where the A#t are the excess chemical potentials (i.e., the deviations from 
the ideal-gas mixture values). 

Explicit evaluation of the virial coefficients in general is cumbersome, 
since, e.g., the computation of --2nAB'AB has about the same complexity as 
ca lcu la t ing  B 4 in a monatomic system. But there is no way to avoid 
evaluating all three types of virial coefficients (atom-atom, atom-molecule, 
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molecule-molecule) if we want to have a truly systematic expansion. For a 
system of hard spheres A and B of diameters 

d A = ( l + y ) d ,  d a = ( 1 - y ) d ,  - l < y ~ < l  

reacting to form fused-sphere diatomic particles AB with center-center 
distance 

a=xd,  O<~x<<. 1 

it is straightforward to calculate the virial coefficients 

A A ~ 3 BA,  B TC B,B g B 2' = g d  ( 2 + 2 y )  3, =gd323,  B 2 =gd3(2-2y) 3 (23) 

and 

B A ,  A B 7~ 3 = g d  [l + y+r(x ,  y, l + y)] 3 

BB, AB 6d3[-1 y+r(x, y, 1 _y)]3 
(24) 

where r(x, y, z) is defined by the equation 

[ r ( x , y , z ) + z ] 3 = ~  for lyl<~x<~l 

I ( 1  + lyl + z) 3 
k, for 0~<x~<ly] 

We have written (24) in a form that suggests that the AB fused-sphere par- 
ticle can be approximated by a hard sphere of effective diameter d ~  = 
r(x, y, z)d. Due to the z dependence of r, the optimal choice for this effec- 
tive diameter will depend on the situation. For a universal approximation 
one must decide on which value of z to use. Fortunately, within a 
reasonable range of parameters, r is rather insensitive to z. We have 
investigated the ratio r(x, y, 1 + y)/r(x, y, 1 - y) over the allowed range of 
parameters (0 ~< x ~< 1, - 1 ~< y ~ 1), and found it to vary within the range 
(0.98, 1.02), the largest and smallest values being obtained at x =  1, with 
y~0 . 38  and -0.38,  respectively. This is illustrated by Fig. 1, where we 
plot r(1, y, z) for z - - (1  + y, 1, 1 -  y). This gives us confidence that the 
approximation 

7~ 3 
~2RAB'AB ~'~ d [2r(x, y, 1)] 3 
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0!2 0!, 0!~ 0!8 ~ Y 

diameter dAB = rd should vary with the physi- Fig. 1. This figure illustrates how the effective " ~ff 
cal situation to which the effective diameter approximation is applied. The ratio r(x, y, z) is 
plotted for x = l ,  with z = l + y  ( - - ) ,  z = l  (--) ,  and z = l - y  ( - - ) .  The curves for 
r(1, y, 1 __+ y) are those which reproduce the correct second virial coefficients B AB'A and B2 AB'B, 
respectively. 

is accurate to the few-percent level. It may also be a reasonable approxima- 
tion to treat the AB fused sphere as hard sphere of effective diameter 

d~A~ = r(x, y, 1)d 

throughout the range of fluidlike densities. For equal-diameter atoms the 
function r(x, O, 1) is plotted in Fig. 2. 

5. FLUID REGIME IN THE H A R D - S P H E R E  A P P R O X I M A T I O N  

The statistical mechanics of a hard-sphere fluid has been extensively 
studied, to the extent that for many purposes it can be regarded as an 
exactly known "reference system." We here make use of this knowledge by 
approximating the AB molecules by hard spheres of effective diameter dAB. 
As a simple analytic approximation to thermodynamics we adopt the 
MCSL equation of state for a hard-sphere mixture, ~16) 

p '~ 1 3,7r (3 - , 7 )  ,7~ 
J § )~ + )~ (25) 

k~TT~ MSCL 1 - - / 7  ( 1 - - ? ]  ( 1 - - ~  
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' 0!4 0!~ 0!~ I x 0 . 2  

Fig. 2. The effective hard-sphere diameter d ~  for a molecule of equal-size atoms, plotted as 
a function of the interatomic distance a. 

where p = Y~t Pi is the total density, and q = (~c/6) ~ i  Pi d3 = (To/6) p(d 3) is 
the filling fraction (with pi the density and d~ the hard-sphere diameter of 
species i). The remaining dependence upon composition and geometry is 
encoded in the parameters 

( d ) ( d  2 ) ( d 2 )  3 

( d  3 ) ' ( -  ( d 3 ) 2  

with 

(dn)=Zxid '~ ,  x i :  / Pi ~Pi 
i j 

Equation (25) gives the correct low-density behavior up to (and including) 
the third virial coefficients. The corresponding expression for the excess free 
energy is 

(knA~fTo)MscL = (~ - 1 ) l n ( 1 - q )  + l ~ q  + (1 - t / )  2 (26) 
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from which the excess chemical potentials can be found to be 

( Al~i) = (1 + air/ 0 , c~ Af  

Biq -- Ci~l 2 + D,.tl 3 
= - A ,  ln(1 - ~/) -t (1 

where 

d? b , :  dr d? d3 l, c , :  3 d? d? 
a , -  ( d 3 ) ,  ~ - ~ 4  (d2)  (d3)  (~5-~-2  (d3)  

(27) 

- 1  

and 

A i =  1 - ( 1  +c~)~ 

--. ~'(0, 1 - 3r 2 + 2r 3) as XAB --* 0 

( ( 1 - 3 r  2 + 2 r  3,0) as XAB--~I 

B ~ = a i +  3 ( l + a ~ + b i ) ~ +  (1 +ci)~" 

~ ( 8 , 3 r + 6 r 2 - - r  3) as X A B ~ 0  

~ ( ( 3 r - 1 + 6 r  2--r  3,8) as XAB-*I 

C i =  2a~+ (6 + 3a~+ 6b~)~ + ('1 - 3a i+  c,)( 

f ( 9 , 6 r + 9 r  2 - 6 r  3) as X A ~ 0  

- ->~(6r- l+9r-2- -6r-3 ,9)  as XAB --* 1 

D ~ = a ~ +  3(1 +b~)~-a i f  

f(3,  3r + 3r 2 - 3r 3) as XAB --" 0 

--" [ (3 r  -1 + 3r -2 -- 3r -3, 3) as XAB --' 1 

(28) 

Here the limiting cases refer to i =  (A, AB), under the assumption that 
eft XA = XB, dA =dB,  with r = dA~/d A. To proceed, one must  generally resort 

to numerical calculations. What  can be said without  numerical work, using 
the assumptions and results above, is that  the association constant  is renor- 
malized by a factor 

~c - K/Ko = exp [(A#A + Al~ -- A#A~)/kB T] 

which varies between asymptotes ~c o and K1, where 

ln(~Co) = (1 - 3r 2 + 2r 3) In(1 - qo) 

+ [(16--3r--6r2+r3)t lo--(18--6r--9r2+6r3)t l  2 

+ (6 -- 3r -- 3r 2 + 3r 3) r/o3]/(1 -- r/o) 3 (29) 
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a n d  

ln(~cl ) = ( - 2  + 6r -2  - 4r  -3)  ln(1 - t / l )  

- [ (8  - 6r l _ 12 r -2  + 2 r - 3 )  ql 

_ ( 9 _ 1 2 r - l _ 1 8 r - 2 + 1 2 r  3)t/~ 

+ ( 3 - - 6 r  l - - 6 r  2 + 6 r - 3 ) t / ~ ] / ( 1 - - ~ l a )  3 (30) 

as the e q u i l i b r i u m  shifts be tween  the l imits  XAB = 0  a n d  XAB = 1. Here  
we have,  in te rms  of the ba re  densit ies,  t / o = ( ~ / 6 ) ( p ~ 1 7 6  3 a n d  
t/1 (re/6) o , , e r f ,3  1 3 = P A t a A B  ) = 5r t/o. I t  shou ld  be n o t ed  tha t  the two a sympto t e s  
cross each o the r  at  a sufficiently high densi ty ,  t /o=t/o,  crit, a n d  tha t  this 
cri t ical  dens i ty  seems to decrease with increas ing  effective d i ame te r  of the 
molecu le  (cf. Figs. 3 a n d  4). 

W e  can  see f rom Fig. 4 tha t  the two a sympto t e s  ~:0 a n d  ~1 are essen- 
t ial ly equa l  at  lower  densit ies,  a n d  tha t  the over lap  range  m a y  become  
ra ther  large w h e n  the effective d i ame te r  of the molecu le  is appropr ia te .  ( In  

tha t  respect  the choice x = 0.8 is a b o u t  op t ima l ;  the dependence  of K on  
how far the r eac t ion  has p roceeded  becomes  larger  aga in  w h e n  x is 

I 5 

0 

\ 
/ 

0'1 0!2 ~ 0', \0, X..~...._00 ~ N .  

Fig. 3. The renormalization ~c = K/K o of the association constant as function of bare density 
r/0, for a molecule of equal-size atoms, with interatomic distance a = d. (--) The behavior at 
a fixed temperature (for Ko d3= 14). ( - - )  The limiting behavior when the equilibrium is 
shifted toward XAB = 1; (-- - --) the behavior when XAS = 0. 
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/ 
\ 

o.1 o.2 o 3 o.4 o15 o,6 o'~ 

Fig. 4. The  same  quant i t ies  as in Fig. 3, but  with in tera tomic  dis tance a -  0.8d. 

2 0 ~ -  

15" 

1 0 "  

~ 0!~ 0'6 0'B I ~ 

Fig. 5. The  renormal iza t ion  ~c~K/K o of the associat ion cons tan t  as function of the 
in tera tomic  dis tance a = x d  of the molecule,  at a bare density 7 0 = 0 . 4  ( - - ) ,  0.35 ( - - ) ,  
and  0.3 ( - - ) .  
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decreased still further.) Such a behavior was essentially built into the 
approximation used in ref. 12 (cf. ref. 12, Fig. 2). By comparing Figs. 3 and 
4, we find that the association constant is rather sensitive to the inter- 
atomic distance a. This is due to its exponential dependence on the excess 
chemical potentials, and the potentially large cancellation which may occur 
between z~]~/a -}-Z~]../B and ZIktAB. When a = d, this cancellation is essentially 
complete. The a dependence of K/Ko is shown in Fig. 5 for r/0= 
(0.4, 0.35, 0.3). We note the possibility of a phase transition (an "unbinding 
transition") in our model, of a sort discussed in Ref. 18. We reserve its 
consideration for a future report. 

5. E F F E C T  OF C O U L O M B  F O R C E S  

If the pair interaction is such that the integrals over the Mayer f 
bonds fail to converge at large distances, the density corrections become 
qualitatively different. The canonical example is the case of Coulomb inter- 
actions, 

Vc(ri_rj)=Z, Zj q2 
er t r i - r j l  

with Zi.j the (opposite sign) atomic charges in units of the electron charge, 
er the relative dielectric constant, and q proportional to the electron charge. 
[The expression for q2 is a potential source of confusion, since it depends 
on the choice of electromagnetic units. It is q2=e2/4~eo (qZ=e2) in SI 
(CGS) units. Bypassing the necessity of any choice of electromagnetic 
units, one can write q2= hc/137.04 .... with c the speed of light.] The lowest 
order density correction to the free energy is then given by (minus) the sum 
of the ring diagrams, (]7) 

f(R) 1 F 4~zq= _ ~3/2 
kBT 12re L ~  z 2 P ' I  (31) 

where the sum runs over I =  A, B, AB, with ZAB = ZA + ZB. From this it 
follows that the density corrections to the constant of chemical association 
are more dramatic than in the case of short-range forces, 

{ 1 [ (  47gq2 )3 ~ 1/2,) 
K=Ko(T) e x p - ~ ( z ~ + z a - z 2 . ) L k ~ J  }Z2peJ ) ( 3 2 )  

since the suppression is proportional to the square root of density at low 
densities. This behavior is clearly visible in the numerical results of ref. 12 
(cf. ref. 12, Fig. 6). However, its authors analyze a parameter range that is 
beyond the validity of the ring diagrams. The effect embodied in (32) is an 
effect that is not accounted for in the Bjerrum theory of electrolytes (]9) or 
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in any other theory with an association constant given a priorL A simple 
consequence of this effect is that PAB no longer has to increase monotoni- 
cally with the bare densities. Consider the symmetric case, with Z a = 
- Z B  = Z and po = pO. Using (14), we then find that 

77_o 77_o PAB=O 
\OpA OpB/ 

when the densities of unassociated ions are 

8 (erkB T~ 3 
PA =Pn=~ \ q2Z2 j (33) 

which moves rapidly to lower densities with increasing charge, due to the 
Z 6 factor. However, this must be taken only as a qualitative indication, 
since we expect contributions beyond the ring diagrams at the densities 
(33). The reason is that the Coulombic part of the Boltzmann factors is 
large up to a distance of order the Bjerrum length, 

q2Z2 "~ 
b =- \ ~ /  

while in the ring diagrams the approximation 

b 
e • 1 ~ •  

r 

is made. Thus, the average distance between unassociated particles should 
be (much) larger than b for this approximation to be good. A quantitative 
measure is the average number z of particles inside a sphere of radius b. In 
the case of (33) we find 

4~ 64 
z=3 -(pA +pB)b~=-3 

which clearly is not small. We expect results based on (16) and (31) to be 
reliable in the region where z ~< 1 and (rc/6)(p ~ + pO) d 3 ~ 1. Since the first 
condition is based on the density of unassociated ions, which goes to zero 
as T ~ 0 ,  it only leads to an additional constraint at intermediate tem- 
peratures. Note that the Coulomb interaction between an associated pair 
must be included in the zeroth-order association constant, 

K o ( T )  -~ g o ( T )  e ~~ 
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Also, a toms A and B may now associate without  being in their region of 

relative nonionic  a t t ract ion (e.g., their "sticky" region), due to their 
Cou lomb  attraction.  
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